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A solution is obtained to the problem of diffusion (heat conduction) from an in- 
finitesimally thin layer (momentary source) into two different semiinfinitely 
large bodies. This solution is used for calculating how much diffusion contri- 
butes to the strength of bond between a powder coating and a substrate. 

A special study of diffusion (heat conduction) from a thin layer at the boundary between 
two bodies with different characteristics is necessary for the solution of several important 
scientific and technical problems. These problems include, specifically, diffusion of va- 
cancies in atoms adsorbed at the surface of bodies after contact has been established, dif- 
fusion of strong magnetic or orther field pulses, transfer of heat after it has been momen- 
tarily generated (for instance, during deformation of regions directly adjacent to the sur- 
faces making contact), etc. The study of processes in powder metallurgy recently undergoing 
an intensive development, namely the study of sintered powder materials, of powder coatings, 
etc. confirms the importance of this problem. 

Diffusion phenomena are encountered essentially in situations involving bodies with dif- 
ferent characteristics. Meanwhile, the problem of diffusion (heat conduction) has been solved 
only for identical bodies on both sides of the boundary [i]. A solution for the case of dif- 
ferent bodies cannot be obtained by generalization. A special solution is required here, 
taking into account the particular conditions. Such a solution is not only important for 
practical applications but also of interest mathematically. 

i. Fundamental Equation. The problem of diffusion from an infinitesimally thin layer 
(momentary source emitting an amount q of diffusible substance from a surface of unit area 
in the plane x = 0 at the instant of time t = 0) into two bodies with different diffusion 
characteristics is solved on the basis of the equation 

= , - - o o < x < o o ,  t > O  ( 1 )  
Ot Ox 

for the conditions 

c(x, o = o; 

c (x, t ) ~ _ ~  = c (x, t )x .  ~ ,~ = 0, ( 2 )  

ic(x, t)dx=q, t > 0 ,  (3) 
~ o o  

where c(x, t) is the concentration of the diffusible substance. The feature which distin- 
guishes this �9 problem from the problem with identical bodies on both sides of the boundary 
are the conditions 

D ~ D  ( x < 0 ) ,  D = D + ( x > 0 ) ;  (4) 

c ix, t)lx~_o --c (x, t)l.,.~+0 , (5) 
0 0 o  

j' c_ ix, l) dx -}-,f c+ (x, t) dx = q, t > 0  (6) 
- - g o  0 

(subscripts "--" and "+" refer to bodies on the x ~< 0 side and on the x >7 0 side respectively). 
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2. Solution. It is obvious, on the basis of physical considerations, that the solu- 
tion to the system of equations (1)-(6) must depend simultaneously on both diffusion coef- 
ficients D_ and D+. It can be demonstrated that, after rather tedious calculations, the 
solution will be 

c• (x, l, D_, O+) ~ / ~  ( D ,  D ~  l -~/e exp [ - -  x2F• (D_, D ~  t -q .  (7)  

Here the upper sign and the lower sign in the subscript refer to the body in the positive 
half-plane and the body in the negative half-plane, respectively. Inserting solution (7) 
into Eq. (i) yields 

F• = 4 1 D ~  ~, (8)  

which indicates that the exponential part of the concentration of the diffusible substance 
depends only on the diffusion coefficient for the body with the concentration distribution 
c(x, t). Considering that 

r  = 2~ - : / 2  l e - ~ d ~ - ~  I 
h 

(where ~(z) is the probability integral [l, 2]) and inserting solution (7) with expression 
(8) into condition (6), we find 

[a  : :  qa- l / z  (D)'2 -~ D!] 2) ' (9)  

Inserting now expressions (8) and (9) into solution (7) yields the solution to our 
problem 

- " ~  ( D j  ~ ' ) - :  t - ' " 2  C: (X, t) = a q : -  D ~  2 e x p ( - -  4-1x2D~lt-i). (i0) 

For a physical interpretation of the result and its features, it will be convenient to 
consider the concentration distribution as a function of the x-coordinate at the same in- 
stants of time for a body with diffusion coefficient D+when it is contiguous to an identical 
body and when it is contiguousto a different body with diffusion coefficient D- (say D- < D+, 
for specificity). The distribution curve for the second case lies above that for the first 
case, the ratio of ordinates being 2D+I/a(D_ ~/2 + D+~/2) -x. A decrease of the diffusion co- 
efficient in one body results in an increase of the concentration in the other one. The con- 
centration gradient of the diffusible substance changes in the same ratio. 

3. Application of Results to Calculation of StrengtE of Bond between Powder Coating and 
Substrate. One of the most important problems in powder metallurgy is producing a strong bond 
between powder coating and substrate. A bond is established in two stages, diffusion and 
subsequent reaction. On the basis of the preceding results, let us evaluate the strength 
produced by diffusion. 

We introduce a vacancy plane (more precisely, a layer of thickness 2-Xn(a_ + a+), where 
a is the lattice parameter and i < n < 2) into the contact region between two contiguous 
media. This corresponds, approximately, to absence of a bond at the initial instant of time. 
The drift of a vacancy from the vacancy plane and its replacement by an atom constitutes for- 
mation of a bond. Let No be the number of vacancies in the layer at time t = 0 and N be 
their number in that layer at time t. Then the number of atoms in that layer at time t will 
be No -- N and the relative bond strength (compared with the maximum possible bond strength 
oo) can be expressed as 

,~,:; , t  = 1 - -  NN-o  - l .  (ii) 

In this expression 

2 -- In~+ 

N = ~ cdx == 
- - 2  - 1 t z t ~ _  

with c• defined by relation (I0). 

- - 2  - l n a  _ 0 

(12) 

Inserting expressions (12) and (I0) with q = No into relation (ii) yields, after approp- 
riate transformations, 

~ o '  1 - -  O ~/2 ( O J  ~ + D!."~-~cI) ~ -~/'~ := (4- n e D _  '- t -l ': ' j  D1/~ (D 1/'-" + - -= D~/e) - td., (4-!na+D~_l/'-' t-~/:"i, 

This expression simplifies greatly for the extreme case of short time t. 
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Let us now calculate the relative bond strength in the case, for example, of chromium 
powder deposited on iron (or between chromium and iron powders sintered together) at a con- 
tact temperature of 9000K. Considering that the diffusion coefficient D• for vacancies in 

-- ~ ~ ~ - - 1 ~ - - 1 %  iron (D+) and chromium (D_) is D~•247 exp (-- H~K �9 ~ [3] (Do being a preexponential 
factor, AH~ denoting the enthalpy of vacancy movement, related to the energy of diffusion 
activation E through the near-equality AH~ ~= 2-*E, and R denoting the universal gas constant), 
with Do+ = 1.8"i0 -s m2/sec, Do_ = 1.5,10 -s m2/sec, E+ = 2.71.i0 s kJ/kmo!e, and E_ =2.21.105 
kJ/kmole [3, p. 39!, n ~ 1.5 and a+ ~ ~_ ~ 2.5,10 -z~ m [4], and t ~ i0 -~ sec (effective time 
of interaction in the contact region), we obtain with the aid of the table of probability 
integral [5, p. 129] g = oo~ I ~ 0.8 for the relative bond strength. Assuming that Go is 
equal to the adhesion energy for iron and chromium [6, p. 597], we obtain for the absolute 
bond energy o ~ 3.47 J/m 2. 

NOTATION 

c, concentration of diffusible substance; x, coordinate normal to the boundary; t, time; 
D, diffusion coefficient; E, relative bond strength (energy); E, energy of diffusion activa- 
tion; T, temperature; and H, enthalpy. 
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HEAT AND MOISTURE EXCHANGE OF NEWLY DENUDED ROCK MASSIF 

WITH A CHAMBER OF AN UNDERGROUND BUILDING 
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V. A. Shelimanov, and E. M. Kozlov 

UDC 536.24:539.217.2 

The article presents formulas describing the fields of temperature and potential 
of moisture transfer in a massif, and also the dependences for calculating the 
heat and moisture flow from the massif into the air. 

Exhausted underground spaces are widely used at present as stores, production spaces 
and premises for medical treatment, etc., and it becomes necessary to maintain certain tem- 
perature and moisture conditions in them. These disused workings very often have the shape 
of polyhedrons: parallelepipeds, prisms, etc. Existing methods of temperature and moisture 
calculation of cylindrical excavations [i, 2] cannot be used in similar cases. It is there- 
fore expedient to examine the processes of heat and moisture exchange of air and a semi- 
bounded massif through a plane surface (wall). 

It is known [2] that the processes of heat and mass exchange attain their greatest in- 
tensity in a newly denuded massif when the bulk of the moisture enters the air upon evapora- 
tion from the walls. In that case it may be assumed that the criterion of phase transforma- 
tion in the massif is close to zero (e ~ 0) and the differential equation of heat and moisture 
transfer had the form [3] 
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